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We consider substances with an arbitrary number of chemical zeactions on the assump- 
tion that the frozen and equilibrium velocities of sound are close to each other in magni- 
tude. The velocity of an oncoming stream is considered higher than the velocity of propaga- 
tion of small oscillations in a mixture with frozen composition. Under this condition, the 
boundary of the unperturbed flow is constituted by a shock front behind which there are re- 
laxation zones. By the method of joining the external and internal asymptotic expansions, 
we investigate how their structure varies with the increasing velocity of the stream at 
infinity. 

I. Initial Equations. We use the subscript = to characterize a substance in the un- 
perturbed state. We shall assume that the frozen velocity of sound af~ and the equilibrium 
velocity of sound ae= are close to each other in magnitude and ~hat their difference is 
proportional to a small parameter ca2. We assume that the velocity v= of the oncoming 
stream does not deviate greatly from any of the so-called intermediate velocities ~k = of 
propagation of acoustic waves. Using the numbers y(k) to represent this deviation, we have 

(i.I) 

In a mixture in which N reactions can take place simultaneously, the subscript k runs through 
the values 0, i, ..., N. The intermediate velocities of sound satisfy the inequalities [1-3] 

In the limiting cases k = 0 and k = N, the constants y(o) = Ye and y(N) = yf, 

(1.2) 

In order to study the relaxation zones situated behind a weak shock front in a multi- 
component mixture, we shall make use of a system of equations which describes stationary 
one-dimensional flow in the transonic velocity range [4]: 

r 

-, d r '  ~ , dq2 ~ Poo ~ dq2 - -  E o ~ ,  ( 1 . 3 )  
2 (emo~v' -4- ea'~1) 7z' = 6ae~ --dz' ' 6~ = 9oo%o~ a~, ~ -  = 

I ! t ! 

~ 2  = D q 2  -4- e 2 v  �9 

The coordinate x', the desired velocity v' of perturbed particle motion, and the components 
of the vectors q~ = (q~1,...,q~N) and~ = (~21,..., ~N) representing the completeness and 
affinity of the chemical reactions are taken here in a special dimensionless system of units. 
The letters p, p, and m denote the density, the pressure, and a dimensionless thermodynamic 
coefficient proportional to the curvature of the Poisson adiabatic curve for a mixture of 
constant composition. The small parameter e is a measure of the amplitude of the perturba- 
tions. 

In the initial Euler equations any positive-definite and symmetric matrices may appear 
as the kinetic matrix and the stability matrix of the system. The linear transformations of 
the completeness and affinity vectors of the chemical reactions enable us to reduce these 
matrices to a unit matrix E and a diagonal matrix D, respectively. In the system of equa- 
tions (1.3) this transformation is assumed to have been carried out. The components of the 
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constant vector e~ = (e'a,,..o,e~N), which are calculated by means of the adiabatic derivatives of 
the specific internal energy of the system per unit volume and one of the components of the complete- 
ness vector, are also assumed to have been subjected to the above-mentioned linear transfor- 
mations. 

Suppose that the coordinate of the shock front is x' = 0. In front of it the oncoming 
stream remains uniform and is in a state of complete thermodynamic equilibrium, i.e., v' = 
0, q~ = 0 for x' < 0. In the process of shock compression the composition of the mixture 
cannot change. Denoting the difference between the values of any parameter of the gas before 
and after the shock wave by square brackets, we have [q~i] = 0, i = i,..., N. 

The change in the velocity upon passing through the shock front can be calculated as 
follows. The result of integrating the first of the equations in (1.3) is 

' (  j+dvl) ,'' = 6=e,q~ + C, sm~ 

where C is an arbitrary constant. Applying the resulting equation to points situated on 
opposite sides of the surface of discontinuity, we find [(Em~v' + E~yf) 2] = 0. 

The initial data for integrating the system of equations (1.3) take the form 

v' 2 s~! , = 0. (1.4) . . . .  . q 2 ~ = 0 ,  i = t  . . . . .  N ~ r  x'  8 m ~ '  

By Cemplen's theorem, the velocity of the gas is reduced by the shock compression, and there- 
fore behind the surface of discontinuity v' < 0. The last requirement can be satisfied if 
yf > 0. On the basis of the definition (i.i), we arrive at the well-known conclusion that 
shock waves are formed when the velocity of the stream exceeds not only the equilibrium 
velocity but also the frozen velocity of sound. 

After compression, inside the relaxation zones the gas mixture reaches a new equilib- 
rium state~ and therefore 

, �9 dd O, dq~ 0 as x ' ~ o o  (1.5) 
Y ~ V o, dz-'-7 - ~  dx.--'7 . -~  

The value C ~ a = sayf/(sm~) of the constant of integration is found to be the same as for 
the continuous flows which take place when the velocity of the oncoming stream lies in the 
range between the equilibrium and frozen velocities of sound. Using the boundary conditions 
(1.5), we obtain the relation [5] 

2 
, Sa~e 

Vo=--2 

between the velocity of the particles after passing through the relaxation zones and the 
coefficient Ye or yf. 

2. Intermediate Velocities of Sound. For intermediate velocities of propagation of 
small oscillations the following formula holds [1-3]: 

I 2 
=~oo = al~ § 7 6~Voo 

N 

(__ t~,~,k (~N-.__m e , D ~ - k - %  ,. 
] ~N--k 2 2 

re=h+ i 

(2.1) 

Here the symbol a I denotes the sum of all possible products made up of the positive eigen- 
values X,,..., XN, equal respectively to the diagonal elements d**,..., dNN of the relaxa -~ 
tion matrix R = ED = D, taken I at a time in each product. 

We introduce the auxiliary diagonal matrix 

N 

D(k~ = Z 
m .=h+l 

(-- t) '~-k ~  D~-h-1  
GN--k 
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with elements 

N 
d(i~ ) = " ~  ( _  ~)m--h ffN--ra ).~a--k--1 = O'(N)--k--1 

m = k + l  ffN--k ffN--k + 

where the upper subscript (i) in the sum a~ i) indicates that li is excluded from the complete 
set of eigenvalues kx,..., 1 N appearing in it. 

We assume, as often happens with real chemically active systems, that all the relaxa- 
tion processes can be subdivided into two groups. Suppose that one of these is formed by M 
slow reactions and that the remaining N --M reactions are fast. Then 

)+1 . . . . .  ~N--M > >  ~N--Mq-I . . . . .  ~N. (2.2) 

The approximate expression for the M-th intermediate velocity of sound has the form [6] 

N--M '2 
~. 2 Z e21 -- 8avo= (2.3) 

l=l 

if each of the ratios e[I/li, i = i,..., N is comparable to unity in order of magnitude. 

Let us find the asymptotic expressions determining the other velocities of propagation 
of small perturbations. We consider the case k > M. The principal terms of the elements of 
the auxiliary matrix D(k) will be 

O(i,N--M+I,...,N) 
el(k) - -  N - - h - - I  +ii = o(ff._--M+l ..... N> for 1 < i • N - -  ~[ ,  

~(N--M+I,...,N) 
z(k) -_,v-h-i  for N - -  M + t ~ i ~< N .  
~i i  = -  ec(N--M+I,. . . ,N) 

+N--4 

Substituting these equations into Eq. (2.1), we obtain 

N-M O (I,N-M+ 1,...,N) 
t ~Uoo Z '2 N--k--z 

O~h~ = a t~176 - -  ~ t = l  e2l O(~_--kM+l_ ..... N) (2.4) 

It can be seen that the relation so obtained coincides with the initial relation if the 
eigenvalues li(i = N-- M + i,..., N) are formally set equal to zero. Thus, the k-th inter- 
mediate velocity of sound for k > M can be calculated by the exact formula (2.1), regarding 
all the slow reactions as frozen. 

On the other hand, when k < M, the simplified expressions for the elements of the 
auxiliary matrix D(k) can be written in the form 

d!k.) = t for 1 <-~ i ~ N - -  M,  

(I(1,...,N--M,i) 
r / ( ~ )  _ M - k - t  - i i  = ~(~,.yN--M) for N - - M q - I  ~ i ~ N .  

In the case under consideration, it follows from Eq. (2.1) that 

N--M to+ 
o~h~ = a/~ -- y 8av~ Z e~z 

N 
6~v++ 2 Z.a e~l 

/ = N - - M + I  

~(1, . . . ,N--M,I) 
M--k--1 
o ~ , _ ~ , N - M ~  �9 

From the definition (2.3), 

t 2 
tZl~ = tZM~ - -  ~ 8aV~ 

i ff(l ..... N-M,D 12 M-h-1 
e 2 l  ~ " 

I = N - M + I  
(2.5) 
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The last equation is completely analogous to the initial equation, but in this equation the 
role of the frozen velocity is played by the M-th intermediate velocity of propagation of 
acoustic waves. As a result, when we set up the sums o(~..,N-M)- and ~ we do 

not make use of the eigenvalues I,,..., AN_M , which belong to the fast relaxation processes, 
although at first glance the result obtained in this way seems paradoxical. 

In what follows, we shall make use of the following inequality, which is stronger than 
(2.2): 

%1 >> ~ >> �9 �9 �9 >> ~ N - i  >> ~,N.  ( 2 . 6 )  

"The assumption e[~/l~ ~ I, i = I,...,N, is assumed to remain valid. The inequalities (2.6) 
- -  , zl 

cnaracterlze systems in which the rates of all relaxation processes differ in order of mag- 
nitude. Systems of this kind are also often encountered in practice. 

It is evident that now the M-th velocity will not play any special role among the other 
intermediate velocities of sound. In fact, for the sums appearing on the right-hand side of 
formula (2.4), we have the asymptotic estimates 

Vii,N-M-']-1 . . . . .  N )  ~ ~I-I~I.I.I~_N'-A for 1 ~.~ l < N - -  k - -  1, N - k - 1  ~ I%1 �9 �9 �9 

U ( I , N - M + I  . . . . .  IF) ~1  ~ N - k - 1  fOE N - -  ~ ~ ~ ~ N - -  M ' ,  N - k - 1  ~ "  �9 �9 �9 

. . . . .  N ) . . .  . . .  

(2.7) 

For k > M the difference N-- k < N-- M, and from this we obtain the relation (2.3), in which 
the subscript M has been replaced by k. 

Estimates analogous to (2.7) may also be written for the sums 'N-M'I)' and 

u(~,: "',N-M), appearing in formula (2.5). Since N -- k > N -- M, if k < M, the resultis thatwe 
ag~[~ obtain the relation (2.3) : 

N-h ,S 
1 A,~V _ _ ,  

I=N-M+I ~1 

where on the right-hand side the summation is carried out for numbers Z in the interval 
N--M+ l~.l ~ N-- k. 

For the sake of brevity, in our notation for both constant and variable quantities, 
we shall hereafter omit the primes and the index 2, which indicates the result of a linear 
transformation of the completeness and affinity vectors of the chemical reactions. 

3. Monotonicity Properties. It has long been known [7, 8] that shock compression of 
a chemically active mixture results in the appearance of relaxation zones in the stream. If 
the rates of the reactions differ substantially in magnitude, these zones will have different 
widths and will be arranged one behind the other. The width of each zone is determined by 
one or more relaxation processes. The calculations of [9] confirm the conclusion that there 
is a "band" structure in the stream which has passed through the shock front and approaches 
a new equilibrium state. The solution obtained in [I0] for the problem of the motion of a 
plane piston in a gas mixture enables us to judge how the relaxation zones with different 
widths are arranged with respect to time. 

The assumption made at the outset that the frozen and equilibrium velocities of sound 
are close to each other in magnitude considerably simplifies the analysis of the nonlinear 
system of equations (1.3). The use of the method of joining the external and internal 
asymptotic expansions made it possible to establish [5] all the laws associated with the 
"band" structure of shock waves with complete dispersion (i.e., those not including any sur- 
faces of discontinulty). On the basis of the results obtained in [5], we can construct the 
flow in the relaxation zones behind the surface of discontinuity, on passing through which 
the gas is subjected to a sudden compression. 
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First of all, let us prove that the thermodynamic parameters q~ = kiqi/e i are monotone 
decreasing along the coordinate x. Regarding v as a known function and taking account of 
the equation x = 0, which determines the position of the shock front, we have 

x 

q~ = - -  ;~ S v (~) e~i(~-~)d~, i = i . . . . .  N .  ( 3 . 1 )  
O 

We substitute the initial values (1.4) of the desired functions into the system of 
equations (1.3) and calculate their derivatives on the surface of discontinuity. Since the 
parameters of the mixture can undergo jump discontinuities only when yf > 0, it follows that 

e~ 
d q  2 --)~Yf > O, i = i,  N ,  dx e~ < O. 
dz 8m~ " " " 

The second of these inequalities leads to the assertion that there exists some range 0 S x 
Xo, in which the derivative dv/dx < 0. The monotonic variation of v will be established if 
we find that dv(xo)/dx is a negative quantity. 

Assume the contrary and set dV(Xo)/dx = 0. Then, in accordance with the first equa- 
tion of the system (1.3), we have at the point Xo 

_ o .  
i=i ~' i dx  

(3.2) 

Combining the remaining equations of this system with the expressions (3.1), we obtain 

q x0dx iIvx~ 0 

The function v(x) attains its minimum value V(Xo) < 0 at the boundary of the interval 0 
X~Xo. From this it follows at once that both of the terms in braces on the right-hand 
side of the last relation are negative, and the derivatives 

o, = 1 , .  . . ,  ( 3 . 3 )  

a 
Summing inequalities (3.3), after first multiplying them by ei/~i, we arrive at a contradic- 

tion of formula (3o2). This contradiction proves that the velocity of themixture decreases monoto- 
nically as the coordinate x increases, Finally~ in order to conclude that the components of 
the vector qX x x = (ql,.o.,qN) are monotone increasing, it is sufficient to consider once more 
the equations for dq~(xo)/dx. 

4. Transition through the Frozen Velocity of Sound. We begin with the limiting case 
Yf =0. According to the Cauchy data (1.4), we have 

v = 0; q~ = 0, i = t . . . . .  N ~ r  x = 0. (4.1) 

In other words, the velocity and all the thermodynamic functions remain continuous. 
The derivatives dqi/dx = 0, i.e., are also continuous, but, as will be seen later, [dv/dx] 
0. The jump in the derivative of the velocity means that the point x = 0 corresponds to the 
characteristic of the partial differential equations governing the flow of relaxation mix- 
tures. 

In order to construct the field of perturbations in the relaxation zone adjacent to 
the characteristic, we introduce a new scale of length by means of the formula 

x = x / ~ l .  (4.2) 

The first equation of the initial system (1.3) becomes 
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N 

~ 1  ~e~(~'iq~+eW)" 2em| =--8~ .~ 
. =  

(4.3)  

The remaining equations, taking account of the requirements Ik/l, + O, k = 2,...,N, yield 

(el) 
dz, -- q l - ~ l l V  dqh--  _ =  , ~ - o ,  k = 2  . . . . .  N. (4.4) 

It is clear that we can simplify Eq. (4.3), replacing it with 

28m.v~ S2e dql = v= ~-~. (4.5) 

Equations (4.4), (4.5) form a closed system signifying that in the region under considera- 
tion all the reactions except the first one are in the frozen state. 

The resulting system is equivalent to a single second-order equation 

d [ dv "~ 8~ ,(N-*)l 7dv. _ 0 (4.6) 

since the numbers [6, 10] 

N-h 2 
�9 t P ~  ' ~  e l  

(4.7) 

The numbering of these numbers corresponds, of course, to the numbering given by the in- 
equalities (1.2). The integral of Eq. (4.6) satisfying the initial data (4.1) has the form 

s~'(lv'l) i exp i--x, �9 

At the point x = 0 the value of the derivative 

(4.8) 

22 dv ~. 6ael 
dx 2 ~ra~ 

is different from the  value found when the gas is subjected to shock compression. However, 
for yf = 0 the first of the equations (1.3) is satisfied for any value of dv/dx. 

Now let yf > 0, i.e., let the shock wave serve as the boundary of the perturbed stream. 
The scale of the first relaxation zone is determined, as before, by Eq. (4.2). Equations 
(4.4) remain valid, but instead of Eq. (4.5) we must write 

dv 2 e dql 
2 (~,~.~ + ~w)  ~ = 8o~ d~--~" (4.9) 

As in the limiting case 7f = O, the system of equations (4.4), (4.9) corresponds to a situa- 
tion in which only the first reaction goes on, while the remaining N -- i relaxation processes 
are practically frozen. The second-order equation equivalent to this system has the form 

~,-- ~ + ( ~ , ~  + ~('~-~)) ~ -- o. 

Its integral, satisfying the conditions 
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" 81 ~I _ _  9 e a ? #  d v  _ 

v =  . ~, ~-~x i era| for  X 1 : O~ 

will be 

I'm-__'l [ 
- =~ = ~ i,, 2~I ~'1 + 2 - -  - -  

?(~--~#-1)] [ snl~r.I ~- 2ea2'7 (N-l) 
In I 2~I[~,(N-~)_VS] 1" (4.10) 

As yf § 0, this formula becomes (4.8). 

The integral (4.10) can be used for any value of the particle velocity attained when 
the stream is slowed down by the shock wave. In [3, 4] we discussed in detail the concept 
of the M-fold frozen and (N -- M) -fold equilibrium velocity of sound. For the conditions 
given by the inequalities (2.6), this velocity of sound in the unperturbed state is simply 
the M-th intermediate velocity of propagation of small perturbations along an oncoming uni- 
form stream. Taking account of formula (4.7), in the initial dimensional variables the M- 
fold frozen and (N -- M)-fold equilibrium velocity of sound is given by the expression 

. ~  = ~. l -  =---: p=~. ~ , ) j  

for points situated directly behind the shock-front. I~ the same variables, ~he velocity 
of the particles is 

I 
From this it can be seen at once that 

N - M  e~ 

v < a ~  ) for Y ] >  I Po~ 

N - M  2 
_(M) t P=, ~ .  el 

v > =s~ for ?s < -~" --=:~ ~ ~ .  

(M) for a gas passing thrQugh the shock wave can be given ~he fQrm The equation v = afe 

(4. ll) 

The last relation, in particular, shows that as yf + 0, the shock front degenerates into the 
characteristic, and the velocity of the particles when they intersect it remains unchanged. 

If the quantity Tf is only slightly greater than zero, then the velocity of sound be- 
hind the shock wave is less than the frozen velocity but greater than any of the M-fold 
frozen and (N -- M)-fold equilibrium velocities of sound. As Yf increases, the particle 
velocity passes successively through the local velocities of sound a(M) with indices M = 

fe 
N -- I, N -- 2,...,1. Equation (4.11) specifies each such transition. This equation, in turn, 
corresponds to the value y(M) = 2yf in formula (4.7). The velocity of the stream reaches 
the equilibrium velocity of propagation of small oscillations for the condition 

N 2 
I P~ ~ ei 

7 ! - -  2 .2 7_~'], 

which leads to the value Ye ffi 2yf, As the velocity of the stream increases further, the 
velocity of the mixture subjected to shock compression becomes less than the equilibrium 
velocity of acoustic waves. The qualitative behavior of the solution (4.10) remains the 
same for any value of yf. 
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5. Sequence of Relaxation Zones. In order to construct the field of fl0w in the follow- 
ing perturbed region, we introduce the variable 

x = x~/k~. (5. i) 

The first equation of the initial system (1.3) can be written in the form 

N 
do e i 

2 (em| q- e~?/) ~ ----- - -  6~ Z ~ (~'q' + e,v), (5 .2 )  
i = 1  

and from the remaining equations, taking account of the requirements Ak/% a § 0, k = 3,..., N, 
~4e derive 

,( ) ( ')  dq, 

dqa--0 ,  k - - - - - 3 , . . , N .  dx~ 

(5.3) 

We eliminate the variable q, from the system of equations (5.2), (5.3). Making use 
of formula (4.7)~ we have 

Now we pass to the limit as ~2/l, § 0. Since e~/la ~ i, we finally obtain a relatively 
simple first-orde r equation. Adjoining to it (5.3), in which we have also passed to the 
limit as l,/%, § 0, we obtain the closed system 

do ~. 6~ae2 dq, 

( ~ , ~ - - 0 ,  k = 3 , . . . , N .  

(5.4) 

After constructing its solution, we calculate the thermodynamic variable, ql from the rela- 
tion 

% (5.5)  q~ = --  ~---~ v. 

The situation encountered here admits of a simple interpretation: The first reaction, which 
is the fastest, takes place as an equilibrium reaction, the nature of the second relaxation 
process is determined by the state of the system, and the remaining N -- 2 reactions are fro- 
zen. 

Now let us determine what initial conditions must be imposed when we integrate system 
(5.4). To do this, we write the asymptotic expression for the integral (4.10) as x, § ~: 

v= --2-- 
e~y(N-*) r y(N-I) ] (5 .6 )  + exp [- 2r vl Xlj, 

Vf 

b 1 = 2s~[~ 'Clv-')- ~'/] [V(~-l) 1 ~v(N-1'-v! 
8m~ [ V/ J 

As 7f -~ 0, the asymptotic behavior of (5.5) coincides with the exact solution (4.8) of Eq. 
(4.6). From the second equation of system (5.4) we derive an asymptotic representation for 
the thermodynamic variable 
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el{S~a~l(N-i) 2?(N-1)__,~! [ ~(N-i) ]1 
- -  X 1 -~ d i exp ( - -  xi) qi = ~l 2 em=r -~- ~-~--'iT b i exp 2~(N_i ) _ "~$ 

with a new constant d,. In other words, at the end of the first relaxation zone the thermo- 
dynamic variable under consideration approaches its equilibrium value 

e 1 
qi = -- ~i vsi' Vsi = -- 2 

(N- i )  Ca' ~ 
(5.7) 

If we calculate the parameters of the particles behind the shock front in the mixture, where 
the first reaction has already reached equilibrium, the role of the frozen velocity of sound 
af= will obviously be played by the intermediate velocity aN_~,=. According to the first 
formula in (1.4), the quantity Vs, is the perturbed velocity of the stream for such sudden 
compression. 

Now we shall make use of the principle of joining the external and internal asymptotic 
expansions [ii]. Since the scales of (4.2), (5.1) are related by the formula 

;'i x~,. 

it follows from the limit conditions (5.7) that 

8a2.~(N -1) 8a2,~(N-l) e 1 

v = -- 2 ~m---'-~-' qi = 2- em~ ~i'  

k = 2  . . . .  , N  for x ~ = D .  

qk = 0, ( 5 . 8 )  

It should be noted that the relation (5.5) coincides in form with the first of the 
limit conditions (5.7) and the following initial value of ql (for x2 = 0). This coincidence 
is simply explained: At the end of the first relaxation zone the fastest reaction, numbered 
i, tends to equilibrium and does not deviate from the equilibrium state in the second relaxa- 
tion zone. 

The initial values of the derivatives corresponding to (5.8) have the form 

B =~'(N-1) e dv __ 6~a e~ dq2 2 ~" 2 
dx 2 8rn~ ~'2' dx2 8rnr162 ~2" 

The above-described behavior of the second reaction of the system (5.4) can be ob- 
tained from Eqs. (4.4), (4.9) by formally replacing the constant yf with y(N-1). An anal- 
ogous situation occurs with the Cauchy data, which are found when we integrate both systems. 
From this we conclude that the field of perturbations in the second relaxation zone is 
governed by the integral (4.10) if the constants yf and 7 (N-I) are replaced by T (N-~) and 
y(N-2), respectively. The formulas (5.6), in which the same substitution has been made, 
will yield the asymptotic behavior of the solution at the exit from the second relaxation 
zone, i.e., as x2 -> =. 

The above process of joining the solutions for different regions can be extended fur- 
ther without any changes. The scale of the j-th zone is introduced by means of 

x = x j / ~ , j .  

The approximate system of equations can be represented in the form [5] 

m (+m+v + +a~V (+-j+~>) d+ o~ dqj 
(5.9) 
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dq~ ( , ej ) 
dx i qJ -~ "~j Y dqh _ - - : - -  , ~ - - 0 ,  k : j - t - t ~ . . . , N .  (5.9) 

After integrating it, we find that the first j --i thermodynamic variables q, .... , qj_, can 
be reconstructed according to the relations 

e i 
q~ = - - r - v ,  ~ = 1  . . . . .  1 - - i .  (5.10) 

h i 

The system of equations (5.9), with the relations (5.10) adjoined to it, can be treated 
as describing a gas in which a single relaxation process, numbered j, is taking place. The 
first j -- i faster reactions take place as equilibrium reactions, while the last N -- j slower 
reactions are still frozen. The compression of the mixture ends after the slowest of the 
reactions goes into an equilibrium regime in the N-th relaxation zone. In each of the N re- 
laxation zones the relaxations can be considered independently, provided that the eigenvalues 
%*,..., %N satisfy inequalities (2.6). 

The initial data for the system of equations (5.9) and the relations (5.10) have the 
form 

Y ~-~ - - 2  
ga2~](N-J'~l) E2"~(N-~+I) ei i l ,  �9 . . ,  ] - -  i ,  

smoo , q~ ~ 2 emoo ~'t' 

q ~ = 0 ,  k = j  . . . .  , N  for x j = 0 .  

The solution of the problem formulated here is obviously given by the expression (4.10), 
where the role of the constants 7f and y(N-*) is played by 7(N-J +~) and y(N-j). As xj § 
the asymptotic behavior of the field of perturbations is established by the formulas 

ej 8~  (N-j) 

qj = - - ~  Vsj, Vsj ~--- - - 2  srn~ ' 

which coincide with (5.7) when j = i. If we calculate the parameters of the particles be- 
hind the shock front in a mixture in which the first j reactions have reached equilibrium, 
the role of the frozen velocity of sound af~ will be played by the intermediate velocity 
UN-j ~. The quantity Vsj is equal to the perturbed velocity of the flow for such sudden 
compression. Since the ~idth of all the preceding zones approaches zero in the scale of any 
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subseqBent zone, continuous compression of the gas in any relaxation zone is seen to be 
equivalent to compression of the gas at the shock front. When we study the final stage of 
the process in N-th zone, the first N -- i relaxation zones may be regarded as a sequence of 
N -- i discontinuities, where in our calculations the frozen velocity of sound af= is replaced 
in each case by the intermediate velocity ~N-j-, J = i..., N -- i. 

The compression of the mixture in the j-th relaxation zone is accompanied by a change 
of velocity by an amount 

E2 2 2 
Au = -- 2 -~ (?(-~-J) -- ~/N-j+~)) = ~p~ ej o ~.. < 0 ,  

srnor p ~ v ~ m ~  J 

which agrees with the general property, proved in Sec. 3, that it is monotone decreasing as 
we move away from the shock front. 

In conclusion, we consider the difference between continuous flows (completely dis- 
persed shock waves) and motions which include forward-shock discontinuities (shock waves with 
partial dispersion). The number of relaxation zones in the first type of motion depends on 
the value of the velocity of the oncoming uniform flow, while in the second type of motion 
the number of relaxation zones will always be equal to the number of independent reactions. 
The restoration to equilibrium of a mixture which has been brought out of the equilibrium 
state by a forward shock requires the successive inclusion of all relaxation processes. 

To illustrate the theory explained above, we performed calculations of the structure 
of the relaxation zones behind a shock wave in a mixture in which two reactions are taking 

2 2  place. In the calculations we set e /(r = I, 6a/ca = 2, Xt = i00, el = i0, X2 = i, e2 = I, 
lf~ = io The results are shown in Figs. 1-4, where the solid curves correspond to the exact 
numerical solution of the problem, while the dashed curves relate to the data of the asymp- 
totic analysis~ In constructing Figs. 1-4, we used the variables V = v~/ye~, QI = X1ql/ 

(Ye~el), Qz = 12q2/(Ye~e~), ~i = -~,/(ye~e,), ~2 = -~2/(Ye~ea). The coordinate x2 X2x = 
x was used as the independent variable in Figs. i, 3, and 4, and the coordinate x, = X,x 
in Fig. 2. The selected example is characterized by the fact that the velocity of the par- 
ticles immediately behind the shock front is equal to the local singly frozen and singly 
equilibrium velocity of sound. 
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